6. Knowledge M odeling

From*“ Verification, Validation, and Evaluation of Expert Systems, Volume|”

This chapter presents some knowledge models that can be used to partition knowledge bases using
expert knowledge. The chapter includes:

Definition of knowledge models.

Using knowledge modelsfor VV&E.

Using knowledge modelsin the expert system lifecycles.

Some example knowledge models.

Proof techniques for specific knowledge models.

Specific knowledge models

Appendix A presents some mathematica results used in the chapter about partitioning using the clear
box methodol ogy.

Introduction

Knowledge models are high level templates for expert knowledge. Examples of knowledge models are
decison trees, flowcharts and state diagrams. By organizing the knowledge, a knowledge mode helps
with VV & E by suggesting strategies for proofs and partitions; in addition, some knowledge models

have mathematica propertiesthat help establish completeness, consistency or specification satisfaction.

More particularly:
The knowledge modd highlights the main points of a knowledge base, often obscured in the
knowledge base.
A knowledge modd partitions alarge KB into smaller, easer to verify, pieces.

There are mathematical properties of the knowledge mode that help establish the correctness of a
knowledge base.

An Example of a Knowledge Mode

PAMEX (Pavement Maintenance Expert System) is an expert system for pavement maintenance
management [Aougab et. d., 1988]. A top level model of PAMEX consgts of a partition of the
problem space on the following three variables:

Leve of information about the pavement; the 3 values are extensive, some and little or none.

Range of pavement serviceability index (PSl); the 3 values are above 2.8, between 2.8 and 2.0, and
below 2.0.

Thelevd of trestment desired; the 3 values are long-range, mid-term and short-term.
For each of the twenty seven regions formed by the Cartesian product of the three regions on each
variable, thereisasmadl expert system that handles problemsin that region. These small expert

systems use the same pavement variables, i.e., PSI and other more specific pavement measurements.
In this case, the model is adecision tree, discussed and illustrated in the next section.

Using Knowledge Modelsin VV& E

The gtepsin usng aknowledge modd in VV&E are:
Collect the knowledge modd from:
The domain expert(s) working on the project.
Standards documents in the domain.
Notes from knowledge acquisition at the time an existing system was built.

Validate the knowledge; see Chapter 9 on knowledge validation for details. This step isto ensure
that the knowledge going into the expert system represents correct expert knowledge.

Prove the expert system using the knowledge model is complete, consstent and satisfiesits
specifications; this chapter, aswell as chapters on partitioning and small systems, provides
information on how to develop these proofs.

Decision Trees

Introduction

A decison treeisaset of decisions that partitions the input space into a set of digoint regions that
cover the entireinput space. In adecision tree system, a sequence of decisions based on user input and
other data are used to classify the input problem before going on to the rest of problem solution.

The top of the decision tree corresponds to the start of the decision process. At each interior node of a
decison tree, the problem is supposed to be assigned to one and only one of the subnodes. The
solution of the detailed problemsis often handled by speciadized expert systemstailored to the
gpeciaized stuations found by the decision tree.

Definition

A decision tree expert system has a structure that is described by atree. A decision tree system hasthe
following properties:

Each interior node of the tree has a variable or expression assigned to it.

Each edge to a subtree islabeled with a set of values for that variable or expresson on the parent
node.

All possible vaues of avariable are on some edge.
No variadble vaueis on two different sibling edges.

Associated with each leaf node is a subsystem or output(s). A subsystem at atip node N of a
decison tree is cdled to solve the problems for which variables appearing in the tree have values
associated with the path that leads to N.

Example
A decison treefor PAMEX isillugtrated in figure 7.1 of the following page.

PAMEX Decision Tree

Start
No Info Some Info Complete Info
PSI<22 PSI>=2.2 & PSI<=2.8 PSI>28 PSI<22 PSI>=2.2 & PSI<=2.8 PSI>28 PSI<22 PSI>=2.2 & PSI<=2.8 PSI>28
— Long — Long — Long — Long —— Long —— Long — Long — Long —— Long
— Medium — Short — Medium — Medium — Short — Medium — Medium — Short — Medium
— Short — Medium —— Short —— Short — Medium — Short —— Short — Medium — Short

LEGEND
PSI: Pavement Serviceability Index

Info: the amount of information
available about the pavement

short, medium, long term: the time
period for which the fix is made,

subject to budget constraints Pavement Maintenance Expert System

Figure6.1: Pamex DT

Use During Development

Decison trees are a useful way to organize expert knowledge. Their useisindicated when the expert
can describe in what order information is obtained and used to partialy determine asolution. Drawing
adecison tree from information the expert(s) have provided is a good way to present the knowledge
engineer's conception of the information back to the domain expert for validation.

Use During W& E

To model an expert system as adecision tree for the purpose of showing correctness, the following
conditions should be satisfied:

Each possible set of inputs should be in one and only one of the partitions generated by the decison
tree.

For each partition, there is an expert system (a subsystem of the entire system) that correctly solves
problemsin that partition.

Experts vaidate the decision tree.
The expert system assigns each input to the correct partition as the result of afinite computation.

To prove completeness of an expert system modeled by adecision tree, prove the following:

Each possible problem in the input space is assigned to some partition of the decision tree.
Each expert system assigned to one of the partitions computes a solution for each problem
assgnedtoit.

To prove consstency of an expert syssem modeled by a decison treg, prove the following:

Each possible problem in the input space is assigned to at most one partition of the decision tree.

Each expert system assigned to one of the partitions computes at most one solution for each
problem assigned to it.

Each computed solution isinternally consistent.

To prove satisfaction of a requirement of an expert system modeed by adecision treg, it needsto be
shown that the requirement is satisfied for the expert system associated with each tip of the decison
tree.

Ripple Down Rules

Introduction

Ripple down rules (RDR’s) [Kang, et d, 1994.] are a gpecia case of decision trees for reasoning with
defaults. RDR’s are guaranteed to be complete and consistent.

Definition

With ripple down rules, the knowledge base is organized aslists of rules. If the conditions ("if" part) of
arule are satisfied, then the expert system moves to the part of the knowledge base attached to this
rule. In some cases, thisisanother list of rules. If so, the expert system teststhe rulesin the sublist. If
there isno sublist of rules, or if none of the sublist rules are satisfied, then the conclusions "then part” of
theruleisused. Figure 6.2 demonstrate an example of asmall expert system for vehicles classfication.

Example

Asan example, asmal expert system for vehicles classfication is presented.

Themainlig is
L11: If NOA (Number -of Axles)is2

Try List 1-1; Default = Car.
L12: If NOAis3,

Try Ligt 1-2; Default = 3 Axle-single unit Truck.
L1.3: If NOA is4,

Try Ligt 1-3; Default = 4 Axle-single unit Truck.
L14: If NOA is5,

Try Ligt 1-4; Default = 5 Axle-single unit Truck.
€tc.

Here are the ligts that fill out the next level of the knowledge base; note that thisis not an exhaustive
knowledge base.

L1-1.1: If S1<=12 itisaCar-Van-Pick up.
L1-1.2: If S1<=20,itisa2 Axle-sngle unit Truck.
L1-1.3: If S1>20,itisa2 AxleBus.

L1-21: IfS1<=12& 8<S2<=18,itisalLight Vehiclew/ Single Axle Traller.
L1-22; If7<S1<=20& S2<=8§,itisa3 Axle-sngular unit Truck.

L1-23:. IfS1>20& S2<=8,itis3 AxleBus.

L1-24. If Else itisa2 Axle Tractor w/ Singular Axle Traller.

L1-31 IfS1>7& 2+ S3<=12,itisa4 Axle-sngular unit Truck.
L1-32 IfS1>7& S2<=8& S3> 6, itisa3 AxleTractor w/ Singular Axle Traliler.
L1-3.3. If Else itisa2 Axle Tractor w/ Tandem Axle Traller.

L1-4.1: If S2+S3+HA < 16, itisa5 Axle-singular unit Truck.
L1-4.2: If S2<=8& HA<=105,itisa3 Axle Tractor w/ Tandem Axle Trailer.

L1-43:. IfS2>8& S3+HA<=12,itisa2 Axle Tractor w/ Tridem Axle Trailer.
L1-44: I1fS2>8& 12<S3+ A <=16,itisa2 Axle Tractor w/ Tridem Axle Trailer Split.
etc.

Figure 6.2: Example ES (continued)
Similar rule ligts could expand lists 1-3 and 1-4.

The expert system starts the example and the system movesto list 1-2 (likewise for the other L1 rules).
If none of the entry conditionsto therulesinlist L1 is satisfied, the default of L1, car, isthe KB
conclusion.

Under the condition that NOA is 3, the system movesto list 1-2 and if none of the entry conditionsto
thoserulesis satisfied, the default of L2, axle-single unit truck, isthe KB conclusion.

Use During Development

Kang et d., 1994 point out that it is possible to add correction rulesto arunning ripple down rules
expert sysem. Whenever an error occurs, that error gets added to the last list of rules which the
system tried before choosing an erroneous defaullt.

Ripple down rule systems are idedlly suited to problems where knowledge has the following structure:

Early decisons made on a problem narrow the range of possible solutions, while later decisons
pick particular solutions from a selected class.

Thereisadefault solution at each stage of the solution process.

Changing a Ripple Down Rule System

Ripple down rules are a specid type of decision tree. For aknowledge base that consists of a series of
more detailed decisions, but where the bases of the more detailed decisions vary for different points of
the decision tree, the ripple down rules model is appropriate.

Given: an RDR, and arule (if C then A) which the dgorithm should execute, the agorithm change
modifies the KB to make (if C then A) part of the system:

casel: Topleve list of RDR isempty.
If default(RDR) = A, do nothing,
eseinsat (if Cthen A) asal-dement list of RDR.

case 2. The conditions on thefirst rulein the top leve list of RDR = C.
Attach to the firgt rule the RDR with default = A and empty rulelist.

case 3: The conditions on thefirst rule subsume C.

Replace the RDR attached to the first rule, denoted by R2, with change(R2).
case 4. C subsumesthe conditions on thefirst rule.

Replace thefirgt rule with (if C then A).
case5: C and the conditions of the first rule can be smultaneoudy satisfied.

Insert (if C then A) before the first rule.

otherwise: Let RDR = H++T, where H isthefirst rulein the top leve ligt, and T is the rest of the rules.
Insert (if Cthen A)inT.

Use During W& E

Completeness of aRDR system follows from the following theorem:

A Ripple-Down-Rule System is Complete.

Proof: Note that part of an RDR system attached to atop level ruleisitself an RDR system.

Definethe level of an RDR system asfollows: If the system hasonly 1 rulelis, itisof leve 1. If the
system has N+1 ruleligts, then it haslevel 1+Max(level of RDR subsystems of the top level rulelis).

Let R bean RDR system of level N+1. Assumedl RDR systems of level N are complete. For any
input, either some top level condition is satisfied or not. In the latter case, the system concludesthe
default. Intheformer case, the system finds the conclusion computed by RDR rules from the first
satidfied top leve rule. If thereisarulelist associated with that condition, the concluson isfrom an
RDR system of level at most N, and so exists. If thereisno rulelist, the conclusion isfrom the
condition itsdf. Therefore an RDR system produces aconclusonin dl cases.

Inasmilar way, it can be proven that dl RDR systems areconsstent. Consistency, however, requires
an additional check: that the conclusions associated with each path through the ripple down rule tree
are consistent.

Satisfaction Of Specification: To verify that an RDR satisfies a proposition P:
1. Verify or modify the default of the top level rule set.

2. Veify or modify thefirst rule, if any inthetop leve list to satisfy P.

3. Veify or modify the RDR system attached to the first rule, if any.

4. Let RDR =H++T, where H isthefirst ruleinthetop leve list, and T isthe rest of therules. Verify
or modify T to satisfy P.

Generalizations Of RDR: A generdization of RDR systems occurs when the conditionsin RDR rules
are replaced with specidized expert systems whose purpose is to make the decison specified in the if

part of the RDR rule. When, in an ordinary RDR system an RDR ruleif part is evauated, a
generdized RDR system may cdl an expert subsystem. Thisisabackward chaining process dthough
RDR systems are more structured than general backward chaining systems.

The same algorithmsfor VV & E on RDR systems aso work for generaized systems, provided that the
expert subsystems carry out the tests provided in the rule condition that the subsystem replaces.

State Diagrams

Introduction

A sate diagram is a useful formal representation for the top level of process control expert systems.
Definition

A date diagram system is one where there isaunique Sate at every step of asolution, and at each
date, there is afunction that determines the next Sate.

Example
A date diagram can be used to model driver behavior on aroad segment. A set of states indicates the
stuation and/or god of the driver. For example, some possible states are:

Digtance ahead too small.

Clear road ahead.

Approaching desired exit.

A driver modd based on these statesis shown below. The case statement branches on the vaue of the
variable state.

state = start_loop;
while (stateis not equal to exit)
case (state)
[
case start_loop:
if (distance ahead istoo small)
dtate = distance ahead too small;
else (approaching desired exit)
date = exit;
else (clear road ahead)
date = clear road ahead,
else dday asmdl time increment;
case clear road ahead:
if (current speed < desired speed)
increment speed;
dday asmdl time increment;

state = start_loop;
case distance ahead too smadll:

if (current speed < desired speed)

{ if (passing possible)
pass,
€l se decrease speed; }

dday asmdl time increment;

state = start_loop;
case exit;

return any current useful information to caling program

In this example, the decision to pass may be made by another expert system. In addition, fuzzy logicis
often used to assign amembership grade representing how much the current situation belongs to each
of the possible states. In this case, the expert system chooses a state with the highest membership
grade and executes the code associated with that state.

State Diagram Systems Represented as Rules Systems based on state diagrams may be encoded into
expert system rules. The following include two of the rules that would implement the above example
in rule form:

if state = start_loop
and distance ahead istoo small
then state = distance ahead too small.
if state = start_loop
and gpproaching desired exit
then exit and return information to calling program
if state = start_loop
and clear road ahead
then state = clear road ahead
if state = start_loop
and not (distance ahead istoo small
or approaching desired exit
or clear road ahead)
then delay asmadll time increment
if state = clear road ahead
and current speed < desired speed
then increment speed
and delay asmadll time increment
and state = start_loop;
if state = clear road ahead
and current speed >= desired speed

10

then and dtate = start_loop;
if state = distance ahead too small
and current speed < desired speed
and passing possible
then pass
and delay asmall time increment
and state = start_|loop
if state = distance ahead too small
and current speed < desired speed
and not passing possible
then decrease speed
and delay asmall time increment
and state = start_|loop
if state = distance ahead too small
and current speed >= desired speed
then decrease speed
and delay asmall time increment
and state = start_|loop

Use During Development

State diagram models are useful during development when expert knowledge has the following
characterigtics:

The problem solution consists of a series of distinct steps.
Which step to choose is a complex, but knowledge-based decision.
The possible paths through the steps may contain loops.

To run such arule-based system based on state diagrams generally requires an inference engine that
can do both forward and backward chaining with the same knowledge base in a strategy caled forward
chaining with local backward chaining. In this strategy applied to the knowledge base forward chaining
keeps applying rules until arule containing the command to exit the knowledge base fires. Backward
chaining is used to establish the conditions within the rules, e.g., passing possible in the above example.

Use During W& E

Completeness of a state diagram system can be established by showing that for any inputs the system
eventualy reaches afinal state where it returns information and exits to the caling environment. Ina
complex system in which the predicates that control trangitions between states are themselves expert
systems, the proof of completenessis hierarchical:

1. Assume that the expert subsystems satisfy their specifications. Using this information, prove that
the system reaches afind state.

11

2. Prove that the expert subsystems satisfy their specifications, and aso that they terminate for any
possible inputs.

Since atable of one vaue for each of aset of variablesis consstent, state diagram systemsthat return a
st of variable values when they reach afind state arelogically consstent. The set of variable values
may be unsatisfiable, however, given the specifications for the expert syslem and expert knowledge
about the domain.

To show that the output of a state diagram system satisfies a specification for the expert system
demondtrate that:

For each dtate, if the specifications are satisfied on entering the State, they are dso satisfied when
leaving the State.

The specifications are satisfied at the start state. Often the specifications are trivialy satisfied at the
start Sate, because the values of output variables are unknown.

The system aways reaches afina sate.
Satisfaction Of Specifications To prove that a specification for a sate diagrams is satisfied, one

should prove that for any input in the input set of the specification, the state diagram eventually
reaches afind state in which the requirements of the specification are satisfied.

Flowcharts

Introduction

Fowcharts are another method for recording expert knowledge and can serve as amode for the
knowledge in an expert system.

Use During Development

Howecharts can be implemented best by using a procedura programming language, i.e., alanguage that
permits:

Blocks, i.e., sequences of statements used as a single statement.

Branching statements, e.g., if-then-else or switch statements.

Loops, e.g., while, do and for loops.

Function calls, permitting a procedure to call other procedures or itself.
If, however, some procedura knowledge isincluded in alargely non-procedura knowledge base and

the available implementation shell does not permit procedura programming, it may be more convenient
to encode the procedural knowledgein rules.

12

In this case, aflowchart can be represented in rule form by associating a state with each box in the
flowchart and by writing rules that describe the transitions between boxes represented by the linesin
the flowchart.

Use During W& E

Completeness, consistency, and satisfaction of specifications for flowcharts are amilar to the problems
for state diagrams.

If the effect of the flowchart isto set variable values, dot vaues on objects, or build other data
structures, the logical statements represented by these structures can usualy be satisfied. The result of
the flowchart islogically consistent but not necessarily consistent with the specifications for the expert
system or other expert knowledge about the application domain.

Consstency: Flowcharts need not produce cons stent output even when:
The flowchart dways reaches an exit box.
All of the variables that are outputs of the system have a unique vaue.

If, however, al possible tuples (ordered list of variables) of output variable values are consstent i.e.,
for any assgnment of valuesto output variables, it islogicaly possible, and consistent with domain
expertise, for the variables to have those variables smultaneoudy. Then, if for dl inputs, the flowchart
defines unique vauesfor al the output variables, the flowchart is consistent.

Completeness. A flowchart islogically complete, if no matter what the inputs, the flowchart dways
reaches an exit box. For thisto be true, the one must prove that:

The computation eventudly exits from any loop entered within the flowchart.

All functions called within the flowchart satisfy their specifications for dl inputsand perform ther
computation in afinite time.

Satisfaction Of Specifications: To show that aflowchart system satisfiesits specifications, the basic
strategy isto show that if the specifications are satisfied on entry to each box in the flowchart, they are
satisfied on exit from the box. Specifications are generally satisfied before the initial box because
variables are not yet set to values, but indicating that specifications are satisfied at the sart isa
necessary part of the proof of specifications.

13

If box A of the flowchart has just one exit line L going to box B, then A, B, and L represent a sequence
of separate computations. To show that this part of the flowchart satisfies the specifications, one
should demonstrate that:
The computationsin A and B can dways be carried out in only finite time.
If the specifications are satisfied on entry to A and B, they are satisfied on exit. In proving the
specifications for B the user can assume the results of the computationsin A, in addition to the
Specifications that were assumed on entry to A.
If box A of the flowchart performs atest to decide a proposition P, and if A hasexitsto box B if Pis
true and box C if Pisfalse, then the user must demongtrate that:

The specifications are true at the exit box(es) when garting a B with the assumption of the
specifications plus P, and that the computation always reaches an exit box in afinite computation.

The specifications are true at the exit box(es) when garting at C with the assumption of the
specifications plus not P, and that the computation aways reaches an exit box in afinite
computation.

If aflowchart contains aloop, one must demonstrate that, for al inputs satisfying the specifications, the
following criteriaare met:

The specs are true on exit from the loop.

Given the following assumptions at the loop exit:
The specifications.
The results of computations in the loop.

The conditions for exit from the loop.

The flowchart computation reaches an exit box in finite time and the specifications are true when
reaching the exit box.

Functionally Modeled Expert Systems

Introduction

As discussed in the chapter on partitioning without expert knowledge (see Chapter 5), an expert
system can be thought of asafunction. A function maps sets of inputs (information the expert system
receives from the user or other external sources) into a set of outputs reflecting actions taken and
conclusonsinferred by the expert syslem. Idedly, the function that an expert system representsis that
which maps each set of problem inputs into the set of actions and inferences that an expert would make
given thoseinputs. The expert system will be said to implement this function, and the function will be
said to model the expert system with the understanding that an expert system only approximatesthe
behavior of an expert.

Some functions are built from smpler functions with operations such as (function) compostion or
Cartesian product (operations discussed in more detall below). Sometimes, because of domain
knowledge, the expert system should represent a function that is constructed from smpler functions. If

14

that isthe case, the structure of the function provides the knowledge engineer with tools for structuring
and partitioning an expert system.

More particularly, the operations of Cartesian product and function composition in the category of
functions are of particular importance in moddling expert systems. Let E be an expert system such that
the output of E involves setting variables O1,...,0n such that the values of the O’ s are independent of
each other. Then E implements the Cartesian product of functions fi such that Oi =fi(li), whereli isa
subset of the inputs of the entire expert system found by computing the dependency relation (see
Chapter 6 on partitioning without expert knowledge) starting with Oi.

If one of the fi isacomposition of functions, e.g.

fi = h(gl(li), ..., gm(li))

then using the same techniques of Chapter 6, one can find subsystems of the origina expert system that
implement the g's and h can be found.

Asdiscussed in more detail below, if the expert subsystems are complete, consistent and satisfy
specifications, and if there is consstency and specification satisfaction among independently chosen
possible values of Cartesan component subsystems, the entire expert system is complete, consistent
and satisfies specifications.

Note that this does not mean that completeness, consstency and specifications satisfaction of arbitrary
subsets of an expert system imply corresponding results about systems asawhole. The subsetsmust
be those that implement functions used to congtruct the function that models the expert system, and
certain additional requirements among the outputs of component systems must be met.
Expert knowledge is generally of greet benefit in identifying:
Independent outputs that can be used to decompose an expert system into a product of expert
systems.

Intermediate hypotheses that are functions of the problem inputs but are themselves inputsto a
later function that produces some or al of the outputs of the system asawhole.

Following are some examples of composite functions which provide opportunities for structuring and
partitioning expert systems.

Use During Development

These gtrategies often smplify development by replacing a sngle development task with two or more,
which islessthan the origind task. During VV&E, these strategies likewise replace asingle VV&E
task with two or more development tasks where the total size isless than the origina task.

In each of these cases, the key to whether the partitioning makes these problems smaler is found by
counting Hoffman regions. If E is partitioned into EL,...,En, then if:

(H(EL)+..+H(En)) / H(E)

15

isggnificantly lessthan 1, partitioning E into the Ei decreases the size of the development or VV&E
problem. Note that usually, some rules and variables may be contained in more than one of the Ei.

Cartesan Product Systems. Sometimes an expert system E isrequired to make more than one
decision, e.g., to find values for two different (sets of) variables. In this case, the user can represent the
expert system function e of input | as.

&) = (e1(1), ..., en(l)).

Using the techniques of chapter 7, the user can find subsystems Ei which implement e respectively. If
H(X) isthe number of Hoffman regionsin expert system X, then if

(H(EL)+..+H(EN)) / H(E)

issgnificantly lessthan 1, partitioning E into the Ei decreases the size of the VV & E problem. [Note
that some rules and variables generaly appear in more than one Ei]

consistency: If each of the Ei is consstent, and if the union of consistent sets of output from each of
the Ei is consgtent, the entire expert system is condstent.

completeness. If each of the Ei is complete, the entire expert system is complete.

specification satisfaction: Generdly, proving that specifications are satisfied will involve consideration
of the interaction of the outputs of the Ei. However, if a specification is of the form

If CLand C2...and Cnthen S (6.2)
then (6.1) is equivalent to the set of specifications
If (AND Ei satisfies Ci) then S.

Final Layer Partitioning: In find layer partitioning, the expert system is partitioned into:

Thefinal layer expert systemthat consists of al rules and functionsthat have astheir direct outputs
conclusions of the knowledge base.

Information gathering expert subsystemsthat conclude the inputs to the final layer system.
Thefind layer system contains al rules and functions that produce one or more of the conclusions of

the entire expert system. Theinputs of the final layer expert system are the inputs to these rules and
functions. In KB1, the investment subsystem isthefina layer expert system.

For each of the input variablesto the final layer expert system, there is an expert system that determines
that input to the fina level; that expert system can be found using the methods in the chapter on
partitioning without expert knowledge. In particular, if the find level input variablesare vi,...,vn, let
E1l,...,.En be the expert systems that set these variables.

Those Ei and Ej which overlap greetly, so that:

16

(H(Ei) + H(E))) / H(Ei union Ej) >=1
should be combined into asingle expert system that produces both vi and vj. If, on the other hand,
(H(EI) + H(E))) / H(Ei union Ej)

issgnificantly lessthan 1, Ei and Ej should be kept separate. Note that as described in the chapter on
partitioning without expert knowledge, clustering of vectors from incidence matrices can be used to
determine which of the information gathering subsystems to combine.

Partitioning into afind layer subsystem and information gathering subsystemsiis particularly useful
when there are many rules which compute outputs from the information gathered from the subsystems.
PAMEX isan example of such an expert systlem. In this case, incompleteness or inconsstency in the
fina layer expert system causes the same error in the entire expert system; furthermore, if there are
many rulesin thefina layer subsystem, such errors are easy to make.

Consstency. The entire expert system is consstent when:

Thefind layer expert system is consstent whenever it gets consstent inputs.
Each of the information gathering subsystemsis congstent.
All unions of consigtent output from each of the information gathering subsystems are consistent.

Completeness. If each of the information gathering subsystems is complete and the find layer expert
system is complete, then the entire expert system is complete.

Satisfaction Of Specifications Generdly, proving that specifications are satisfied will involve
congderation of the interaction of the outputs of the information gathering subsystems.

However, if aspecification is of the form:
If CLand C2...and Cnand Cf then S (6.2
where Ci isacondition on subsystem Ei and Cf is a condition on the final layer,
then (6.2) is equivalent to the set of specifications:
If (AND Ei satisfies Ci)
and the find layer satisfies Cf,
then Sisstisfied.

Intermediate Variables Intermediate variables are variables that are computed or inferred from input
variables, and are used to infer or compute conclusions.

17

Many expert systems can be decomposed into two sequential steps (an expert can often tell the user
about such a decomposition):

1. Determinethe value of some intermediate variables.
2. Draw conclusons from these intermediate variables.

In addition, an intermediate variable is useful for partitioning only if some of the input variables of the
system as awhole are used for computing the intermediate variable.

In function notation, an expert system with an intermediate variable is of the form:
e(x1,....xn) = gx1,.... XK, y), wherey = g(xk+1,...,,Xn).

Results about completeness, consistency, and specification satisfaction are entirely analogous to those
for find level partitioning. However, therole of thefind level expert system isthat expert system
which implements the function:

e(x1,...xk, y)

with inputs x1,....xk and y. This expert system can be found by the method in chapter 5. The single
information gathering subsystem is:

g(xk+1,...,.Xn).

Partitioning Of The Function Domain: Let E be an expert system which implements the function (1),
where | isavector of inputs. Let the domain of | be some domain D, such that D is partitioned into
mutualy exclusve subsets { Di}, i.e,

Unior{ Di} =D
Di intersection Dj = NULL fori !=]
Let Ei be the expert system that implements the function:
eredtricted to Di
Then the following results relate correctness of E to the correctness of the Ei.
Consstency:. If each of the Ei isconsstent, sOisE.
Completeness: If each of the Ei iscomplete, s0isE.
Satisfaction Of Specification: If aspecification is satisfied by each Ei, it is satisfied by E.

Examples of domain partitioning occur in decision tree sysems. The effect of the decison treeisto
partition the entire domain of the expert system into subsets, each of which satisfies the conditions
along the path from some leaf node of the decision tree to the root of that tree.

18

Verifying Knowledge Moded Implementations

Overview

Knowledge models are useful for proofs because knowledge models may have certain established
properties, such as consistency and completeness, that automaticaly apply to any system that uses the
knowledge model. This meansthat one can smplify the task of proving something about an expert
system by showing that it uses a knowledge modd.

However, nothing isfree. If one uses a knowledge modd to establish the properties of a system, one
must show that the system actually uses, i.e. implements, the knowledge model. Thisrequirement is
explained below.

Implementation of a Knowledge Model
An expert system implements a knowledge modd if:
The data required by the knowledge model can be identified in the expert system

The data used in the knowledge model is interpreted by the expert system according to the rules
required by the knowledge mode!.

For example, to show that arule-based expert system implements adecision treeg, it should be shown
that:

1. Theexpert sysem hasrulesthat fire for each branch of the decision tree
2. The expert system gathers the information needed to select a branch in the decision tree

3. After gathering that information, the expert system selects the branch, i.e. the expert systemsthe
subsystem attached to the branch determined by the just-gathered information.

Proofs Using a Knowledge Model

If aknowledge modd is used to establish that an expert system has some property, there are two things
that need to be done:

1. Show that for aknowledge base that fits the knowledge mode, the desired property istrue.

2. Show that the expert system implements the knowledge model. How to do so is the subject of this
section.

EXAMPLE
Verifying a System based on Decison Tables

The KB1 demondtration expert system is shown in Figure 4.1. The information in the knowledge base
isshown in the following decision tables.

19

Example Decison Tables:

Risk Tolerance

Discretionary
Income

I nvestment

Boat
Luxury Car

Discretionary
Income

Lottery Tickets
Stocks

Risk Tolerance

Analyzing KB1 With These Decision Tables

yes

Yes

Stocks

yes
yes

Yes

yes
yes

Yes

Bank Account

Invesment Decison Table

no

Yes

Bank Account

Discretionary Income Decison Table

no
Yes

Yes

Risk Tolerance Decison Table

no
Yes

yes

no

no

Bank Account

no
no

no

no
no

no

Toillustrate verifying a knowledge base, the knowledge base expressed in the decision tables will be
accepted as correct; our current god isto see that the code implementing the knowledge base contains
the information in the decision tables, and only that information.

The following tables shows which rulesin Figure 4.1 implement which parts of the decison tables.

Rule

I nvestment

Columns

1

20

2 [nvestment 2thru4

3 Risk Tolerance 1thru3
4 Risk Tolerance 4
5 Discretionary Income 1thru3
6 Discretionary Income 4

To illugtrate how thistable isinterpreted, Row 2 means that Rule 2 implements columns 2 through 4 in
the Investment decision table above.

Building the Rule/Decision Table Relation

The Rule/Decison-Table relation was created by inspection, but the information therein is actualy the
result of smple mathematical reasoning that need not be done in detail, but which must be doable. In
particular, it must be shown that whenever the conditions of one of the decision tree columns
associated with arule are true, the rule produces the conclusiong(s) of that column of the decision tree.
For example, choosing column 2 in the Investment decision table means that:

Risk Tolerance = yes
Discretionary Income = No
This causes Rule 1 to fail and rule 2 to succeed, producing the results of column 2 of the decision table.

It must dso be shown that the only way for any ruleto fire isto satisfy some column listed for it in the
Rule/Decision Tableraion. For Rule 2 thisfollows from the definition of OR, which requires that
one of itsargumentsistrue.

The combination of the these two kinds of arguments show that the rules contain the same logical
information asthe decision tables. However, it is aso necessary to show that the expert system
actually uses these rules for each branch of the decison tree. Thisisbecauseit is possible that the
inference engine might never fire arule that would succeed if it were fired. Therefore, to show that an
expert system actualy implements the decision tree, one must show that the inference engine gathers
the necessary information, and firesthe right rules.

\erifying and Implemented Expert System Code

To illugtrate this process, it will be shown that the implementation code in Clips, shown in Step 3.2 of
the Handbook finish this example, implement decision trees smilar to those shown above. [The Clips
code uses an additiond criterion of amount of savings for discretionary income, so the decision trees
do not exactly apply to its knowledge base]

21

Firsgt, we show that Clips gathers the information needed to run the decision tables. Rules a-5¢ and 3a-
3b gather thisinformation. These rules contain only conditionsin their if parts that are satisfied when
Clips garts, so these rules will be fired, since Clipsisforward chaining.

Here we are using properties of Clips described in the User Reference, and are assuming that Clips
meetsits specifications. This meansthat we are proving that our knowledge base is correct, assuming
Clips meets the specifications we use in the proof. This makes our knowledge base correct conditional
on the correctness of Clips, but thisis areasonable compromise in practice. It ismuch more likely that
something new will contain an error than awell-used program like Clips. However, it should be noted
that errors have been found in much smpler library programs than Clips, and that in safety-critical
systems, the assumptions made about Clips should be verified by testing.

Given that the rules 5a-5¢ and 3a-3b fire, information needed to put the current problem being run on
Clipsinto some columns of the risk tolerance and discretionary income tablesis gathered. This
information creates conditions under which 5d and 6 can fire, according to conditionsin the
rule/decison table relation table. This determines the vaue of discretionary investment. Similarly, rules
3c and 4 have enough information to be fired by Clips forward chaining inference engine. This
provides the information needed to fire the rulesin the investment subsystem (rules1 and 2). Asa
result, in dl stuations, the relevant rulesfire. The determination of which rules fire under various
decison table conditions is determined by the rule/decision table relation constructed using rules 1, 2,
3¢, 4, 5d, and 6. Comparison of these rules with the decision tables, asillustrated above, complete the
proof that the Clips system implements the decision tables.

\erifying a System based on Sate Diagrams
The State Diagram Relation

Following is atable that represents the example state diagram implemented in procedura pseudocode
in the VVE Handbook:

State: Actions Condition Actions Next State

Start: _

start distance ahead too _ distance too
small smd|

start gpproaching desired approaching
exit desired exit

start clear road ahead _ clear road

start default and| dday start

clear road: _ current speed < increment speed, start

22

desired speed snd| dday

clear road default amal dday start
distance too smal desired speed and pass, smdl dday start
passing possble
distance too small default decrease speed, start
snd| dday

exit: return info to
cdling program

The dtate diagram table has the following meaning:

STATE : ACTIONS names the state and lists actions that are taken when the state is entered. For
example, exit : return info to calling program means that on entry to the state exit, return info to calling
program is executed. When thereis no action to be executed, The dash (-) is used after the state name
when there is no action to be executed.

CONDITIONS denotes the entry conditions for a path from the current state. For example, the entry
condition for the 2nd. path from the start state is distance too small. Paths from a state are tried in the
same order aslisted in the table. default may be used for the last path from a state to indicate that that
path is dways taken if none of the earlier paths are.

ACTIONS denotes the actions taken once the conditions for a path have been satisfied. These are
actions that are to be performed when transitioning between a particular pair of sates. For example,
the actions increment speed, small delay are performed when taking the start path from clear road.

NEXT STATE denotesthe next stateto go to. For exampleif the test distance ahead too smdl is
satidfied, the state distance too small is entered.

Showing Code Implements the Diagram Relation

To show that the program implements this state diagram, it is necessary to show that for each row in
the state diagram table:

1. Thereiscode that implements the row.
2. That codeis executed whenever the state for the row occurs.
3. Nothing else in the program interferes with the code implementing arow.

Condition 1 follows from the fact that there is a branch in the code for each row in the table. A
complete verification would identify the computationa path for each row. To illustrate the technique,
congder the row with the following vaues:

23

State = clear road

condition = current speed < desired speed
actions = increment speed, smal delay
next state = start

There is a case statement branch corresponding to the clear road state. Both asmall delay and setting
the next state to Sart are executed whenever the clear road branch is entered, using the definition of
sequential statement execution in procedural languages. Using the definition of if in procedura
languages, increment speed is executed whenever current speed < desired speed.

Condition 3 follows from the following two facts:
1. All codein the case statement implements some row in the table

2. The codefor each row is executed only when the conditions for that row are satisfied.
Whoops -- A Bug!

In attempting to verify Condition 2, abug in the code is found. The code for the exit Sateis never
executed. Thisisbecause the condition for exiting the while loop succeeds whenever the Sate
becomes exit. Even worse, the only return statement for the code occurs in the erroneously non-
executed code for the exit state. Asaresult, the code shown here could return undefined valuesto its
caling context, propagating errors up through the program in which it is used.

The solution to this bug is to move the return statement to just below the while statement. Werethis
done, Condition 2 would be satisfied.

The above bug was not planted, but represents a bug in the code that the authors did not catch before
writing this section. The fact that the bug was found while trying to carry out a verification proof
illustrates that the proof process exposes bugs by causing the developer to examine code greater detail
than when he or she merely inspects the code.

24

